导读:关于高一数学课件(精品多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。
关于最新数学高一课件 篇一学习引导
一、自主学习
1. 阅读课本 练习止。
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结。
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
2. 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质
思考引导
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明。
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
总结引导
1.对数函数的有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数。
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数。
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数。
拓展引导
一、课外作业:习题3-5 A组 1,2,3, B组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围。
关于高一数学课件 篇二一、学习目标与自我评估
1掌握利用单位圆的几何方法作函数的图象
2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期
3会用代数方法求等函数的周期
4理解周期性的几何意义
二、学习重点与难点
“周期函数的概念”,周期的求解。
三、学法指导
1、是周期函数是指对定义域中所有都有
,即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
四、学习活动与意义建构
五、重点与难点探究
例1、若钟摆的高度与时间之间的函数关系如图所示
(1)求该函数的周期;
(2)求时钟摆的高度。
例2、求下列函数的周期。
(1)(2)
总结:(1)函数(其中均为常数,且
的周期T=。
(2)函数(其中均为常数,且
的周期T=。
例3、求证:的周期为。
例4、(1)研究和函数的图象,分析其周期性。(2)求证:的周期为(其中均为常数,
且
总结:函数(其中均为常数,且
的周期T=。
例5、(1)求的周期。
(2)已知满足,求证:是周期函数
课后思考:能否利用单位圆作函数的图象。
六、作业:
七、自主体验与运用
1、函数的周期为()
A、B、C、D、
2、函数的最小正周期是()
A、B、C、D、
3、函数的最小正周期是()
A、B、C、D、
4、函数的周期是()
A、B、C、D、
5、设是定义域为R,最小正周期为的函数,
若,则的值等于()
A、1B、C、0D、
6、函数的最小正周期是,则
7、已知函数的最小正周期不大于2,则正整数的最小值是
8、求函数的最小正周期为T,且,则正整数的值是
9、已知函数是周期为6的奇函数,且则
10、若函数,则
11、用周期的定义分析的周期。
12、已知函数,如果使的周期在内,求正整数的值
13、一机械振动中,某质子离开平衡位置的位移与时间之间的函数关系如图所示:
(1)求该函数的周期;
(2)求时,该质点离开平衡位置的位移。
14、已知是定义在R上的函数,且对任意有成立,
(1)证明:是周期函数;
(2)若求的值。
关于高一数学课件 篇三教学目标
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。
教学建议
教材分析
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
( ……此处隐藏4494个字……p>
(四)强化训练落实掌握
例1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。
例2:比较下列各题中两值的大小
(1)(4/3)-0.23与(4/3)-0.25;(2)(0.8)2.5与(0.8)3。
方法指导:同底指数不同,构造指数函数,利用函数单调性
(3)与;(4)与
方法指导:不同底但可化同底,也化归为第一类型利用单调性解决。
(5)(3/4)2/3与(5/6)2/3;(6)(-2.1)3/7与(-2.2)3/7
方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。(6)“-”是学生的易错易混点。
(7)(0.3)-3与(2.3)2/3;(8)1.70.3与0.93.1。
方法指导:底不同,指数也不同,可采用①估算(与常见数值比较如(8))②中间量如(7)(10/3)3〔(10/3)2/3或(2.3)3〕(2.3)2/3。
变式:已知下列不等式,比较的大小:
(l)
(2)
(3)(且)
(4)
设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。(4)培养学生灵活运用图像的能力。
(五)归纳总结,拓展深化
请学生从知识和方法上谈谈对这一节课的认识与收获。
1、知识上:学习了指数函数的定义、图像和性质以及应用。关键要抓住底数a>1和1>a>0时函数图像的不同特征和性质是学好本节的关键。
2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。
(六)布置作业,延伸课堂
A类:(巩固型)面向全体同学
1、完成课本P93/习题3-1A
B类:(提高型)面向优秀学生
2、完成学案P1/题型1。
教学反思:
指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考:
1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节
(1)由具体的折纸的例子引出指数函数
设计意图:贴近学生的生活实际,便于动手操作与观察。
让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。
(2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。
符合学生由特殊到一般的,由具体到抽象的学习认知规律。
(3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。
通过引入->定义->剖析->辨析->运用,这个由特殊到一般的过程揭示了概念的和外延;而后在教师的点拨下,学生作图->观察->探究->交流->概括->运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。
2、课堂练习前后呼应,各有侧重,通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。
3、教学过程设计为六个环节:
1.情景设置,形成概念->2.发现问题,深化概念->3.深入探究图像,加深理解性质->4.强化训练,落实掌握->5.小结归纳,拓展深化->6.布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。
4、通过学案教学为抓手,让学生先学,老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。
5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提,在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。
关于最新数学高一课件 篇七教学目标与解析
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
问题诊断分析在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
教学过程
问题1:一枚炮弹发射后,经过26s落到地面击中目标。炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
你也可以在搜索更多本站小编为你整理的其他关于高一数学课件(精品多篇)范文。
文档为doc格式